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Outline

• Background – Doppler radar

• CO2 laser RF source

• Nd:YAG laser RF source

• Summary of proposed work
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• Target moving towards you shifts return up in frequency,
away => down

• Doppler shift is proportional to frequency = f * 2v/c
• Doppler shift often separates target from background clutter

Doppler Shift

17 Hz5 HzCrawl (1/4 m/s)

467 kHz140 kHzLEO (7000 m/s)

22.7 kHz6.8 kHzMach 1 (340 m/s)

6.67 kHz2000 HzFly (100 m/s)

667 Hz200 HzDrive (10 m/s)

67 Hz20 HzWalk (1 m/s)

X-Band (10 GHz)S-Band (3 GHz)

Receiver

Transmitter
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Targets Hide in Clutter

• Clutter (environmental returns) gives huge signal compared to 
target,  can be > 106 larger for some targets

• Target return is slightly Doppler shifted in frequency
• Clutter returns transmit signal and transmit noise
• Transmit noise in clutter return can hide target
• Better oscillator helps see small targets hiding in clutter
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Oscillator noise in a Doppler radar 
system can obscure the target

• Oscillator noise is transmitted, blurring the return, and mixed into the 
return in the receiver.

• Noise raises the noise floor, particularly for small frequency shifts 
(small Doppler velocity)

• This limits the ability to see small targets with small velocity against 
clutter

Tx

Rx

Return loss
∝ 1/Cross section

Doppler shift
∝ Radial velocity

Target Clutter
Large cross section
compared to target

Small  or zero 
Doppler shift

Line broadening close to 
carrier due to clutter Doppler
e.g., waves
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Doppler Bin-width Sets Detection Limit

• Minimum Doppler velocity
– Integration time
– Clutter doppler
– Phase noise

• Doppler bin width set to ~10% of Doppler frequency
• Sets clutter & phase noise bandwidth
• Clutter Improvement Factors (CIF) of 60 to 110 dB needed

Rx

Doppler bin:
Noise integration
bandwidth

Target not visible:
Signal far below integrated noise
Need:

- More signal
- Less noise
- Longer integration
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State of the Art

• For times < 1 sec, Quartz is standard to beat
• Atomic clocks use “physics package” for long term 

accuracy
– Terrible SNR
– Shot noise limited with small number of photons
– Accurate by virtue of fundamental physics
– Long (>1000 sec) integration times

• “Flywheel” used for short term precision
– Quartz
– Ultra-stable cavity, CO2 or Nd:YAG lasers

 Path to long-term accuracy – locking laser to an atomic 
reference
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Desired Phase Noise Spectrum

-180

-160

-140

-120

-100

-80

-60

-40

1.E+00 1.E+02 1.E+04 1.E+06
Frequency Offset (Hz)

dB
c/

Hz

HP8662A

Poseidon

Desired

CO2 estimate

Caveats

• All sources normalized to 2.7 GHz
• 6 dB/octave ideal multiplier 

or divider

• “Desired” assumes 
• Ideal RF components
• 12 bit digitizer limits SNR

• CO2 phase noise estimate
• Allen variance translation
• 2 - laser tests
• 10 mW shot noise into ideal 

detector

Phase Noise & Doppler Shifts Normalized to 2.7 GHz

HP8644A



MIT Lincoln Laboratory
9

APPROVED FOR PUBLIC RELEASE – DISTRIBUTION UNLMITED

CO2

Schawlow-Townes linewidth gives the 
quantum noise limit for a laser cavity

outPL
Tahcv 2
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T≈≈≈≈3%,
L≈≈≈≈0.5m, →→→→
P≈≈≈≈1W,

Nd:YAG
T≈≈≈≈2%,
L≈≈≈≈0.07m, →→→→
P≈≈≈≈0.02W,

≈∆
ν
ν

2x10-20 2x10-17≈∆
ν
ν

T=round-trip cavity loss
ν=optical frequency
L=cavity length
Pout=output optical power
h=Planck’s constant
a=inversion parameter (≈1)
c=light speed

∆ν ≈ 5x10-7 Hz ∆ν ≈ 5x10-3 Hz
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Using a two-frequency laser 
as a quiet RF oscillator

• A laser’s optical frequency can be much quieter than state-
of-the-art crystal oscillators.

• Optical frequencies (~100THz) cannot be detected by 
photodetectors, but a photodetector can see the beat 
frequency between two closely spaced optical frequencies.

• The optical frequency noise depends on laser cavity length 
instability which will map onto the RF beat frequency if the 
two frequencies are spatially overlapped in the same cavity:
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• Single cavity eliminates many common-path errors



MIT Lincoln Laboratory
11

APPROVED FOR PUBLIC RELEASE – DISTRIBUTION UNLMITED

CO2 -Laser-Based RF Frequency Reference

• RF beat note (fRF) from dual-frequency, single-cavity 
laser 

• Common optical cavity minimizes RF noise, drift, 
thermal effects, acoustic effects,etc.

• In 1979,  ∆∆∆∆fRF/fRF was found to be less than that of hp 
8672A synthesizer for  times < 200 µs

HgCdTe  
Photomixer   

12C 16O2  + 12C 16O18O +12C 18O2 

RF Output  0.89
1.29, 1.68, 2.18

2.67 or  3.27 GHz

Grating

PZT Wavelength

Dual-Frequency Laser

Filter
(Grating)

G
ai

n
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Characteristics of Freed CO2 Lasers

Features

Super invar spacer rods with thermal, vibration, acoustical & magnetic shielding

Black Diabase granite end plates,  Stabilized DC plasma discharge

Achieved ∆ν∆ν∆ν∆ν/ν/ν/ν/ν 

  

 < 2 x 10 -13

Laser Gain Length (m) Comments

1.5-m Grating 1.23 Long gain region,
Output Coupled mixed isotopes ok

0.5-m  0.23 High-reflectivity mirrors
Two-Mirror needed for mixed isotopes

1.5-m Laser
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890 MHz Beat from Two-Frequency
Mixed-Isotope CO2 Laser 

~0.3 mW of CO2 Power on Photomixer
-28 dBm  from HgCdTe Photomixer
+2 dBm  with 30-dB amplifier

10 dB/div

1 kHz/div

16O12C16O  I P(12)  and  16O12C18O  I P(19) Lines

100 Hz Instrument Resolution
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Phase Noise (f) and Allan Variance (ττττ)

Frequency Domain
Phase Noise Spectrum

Time Domain
Root-Allan Variance Plot

f-4

f-3

f-2
f-1 f0

f
Random Flicker White Flicker White

Walk Freq. Freq. Freq. Phase Phase

ττττ-1

ττττ-1

ττττ-1/2 ττττ1/2

White Flicker White Flicker Random
Phase Phase Freq. Freq. Walk Freq

ττττ

σσσσy(ττττ)

L(f)

Closer to Carrier

Short-Term Stability

ττττ0
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PerkinElmer 
RAFS
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No Precise Cavity Length in Grating Laser

Anomalously large variations in 890-MHz beat 
frequency are a result of 

626 I P(12) and 628 I P(19) operating at slightly 
different cavity lengths  ( 1 nm ~ 19 kHz) -0.1
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L=?

Beam covers ~ 600 grooves

If both beam centers shift by one groove
L shifts by λ/2λ/2λ/2λ/2  

    

  and  fRF shifts by ~ 3 kHz

λ/2λ/2λ/2λ/2
out

22°
~ 8 mm

I P(19)

I P(12)

Length Change (µm)

Gain slope at P(19) operating point 
pulling towards shorter cavity
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Dual-Frequency, Two-Mirror 
Single-Cavity Laser

• Dual-frequency, single-cavity laser minimizes RF phase noise

• 0.5-m two-mirror Freed lasers have shown 1:1013 short-term stability

• Main Issue:  How to get dual-frequency operation without a grating

16O12C16O,  16O12C18O,  18O12C18O

HgCdTe
detector

RF
2.153 GHz

PZT Tuner
(Lo to Lo+λ/2)

1-m  F.L. 
Mirror

R > 98%

Partial Reflector
R  > 97%
T <   3%

Attenuator
CaF2 2 dB/mm

1 - 50 mW
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Calc. Gain vs. Cavity Length for 0.5-m Laser
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Change in Cavity Length with PZT Tuning  (µm)

{Shown are only 626 I P18 and 628 I P25 transitions and 
those I P branch (10.6 µm) lines with higher gain}
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At length ~ 100 µm shorter than LCDR, the 626 I P18 and 628 I P25 lines
are well separated from other strong 10.6-µm lines
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Criteria for Dual-Frequency Two-Mirror 
Mixed-Isotope CO2 Laser

• Short cavity (<0.5 m, 300 MHz FSR) to allow ~10 lines
• Low pressure (<20 torr, <50 MHz FWHM) allows ~ 10 lines

• 16O/18O isotope ratio optimized to balance gains

• High-reflectivity mirrors (>99% spherical and >98% output)

• Selective coated surface in cavity to reject 9.5-µm lines

• Precise cavity length for line-center double resonance

– (e.g. 487.356 mm for 626 I P18 / 628 I P25 beat at 2.15 GHz)

The above leads to LOW GAIN
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Outline

• Background – Doppler radar

• CO2 laser RF source

• Nd:YAG laser RF source

• Summary of proposed work
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Standing-wave cavity lasing in two modes

• Spatial hole-burning causes the laser cavity to oscillate 
in exactly two longitudinal modes.

• The beat frequency will be equal to the cavity free-
spectral-range (= c/2L).

Nd:YAG

L
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Two-mode Nd:YAG laser
proof-of-principle experiment (1993)

• Two-mode lasing has been demonstrated using the spatial-
hole-burning technique.

• The initial demonstration was a table-top design, not intended 
to have excellent noise performance.

Scanning optical spectrum analyzer 
showing two modes

Spectrum analyzer trace of 
the RF beat frequency 
~500 Hz linewidth at 5GHz
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Proposed two-mode laser

• Laser cavity, pump source, and RF photodiode are all 
mounted on a single block and seismically isolated inside a 
vacuum chamber.

RF PD

Nd:YAG

Fiber coupled
808nm diode

~7cm
~2GHz
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Proposed Work

• Year 1 milestones 
– Contruct CO2 and Nd:YAG two-frequency lasers

– Identify technical noise sources (and eliminate if possible)

– Measure Allan variance of laser RF sources

– Optimize laser operation for minimum Allan variance

• Year 2 milestones
– Construct second set of laser sources with upgrades

– Measure absolute phase noise spectra

– Continued optimization and identification of noise sources


